Spatial Production Networks¹

Costas Arkolakis Federico Huneeus Yuhei Miyauchi

Yale University

Central Bank of Chile

Boston University

April 21, 2023 PUC Santiago Macro Seminar

¹The views and opinions expressed are those of the authors alone and do not necessarily reflect those of the Central Bank of Chile.

Motivation

► Key feature of a modern economy is the geographic complexity of production networks

- Fragmented across countries, regions, and firms
- "Global Value Chains" crucial for economic success (World Bank '19)

Motivation

Key feature of a modern economy is the geographic complexity of production networks

- Fragmented across countries, regions, and firms
- "Global Value Chains" crucial for economic success (World Bank '19)
- Two current approaches advancing in parallel (Johnson '18, Antràs & Chor '21)
 - Microeconomics of how firms form endogenous production networks
 - Macroeconomic conditions determined by production network across countries and regions

Motivation

- Key feature of a modern economy is the geographic complexity of production networks
 - Fragmented across countries, regions, and firms
 - "Global Value Chains" crucial for economic success (World Bank '19)
- Two current approaches advancing in parallel (Johnson '18, Antràs & Chor '21)
 - Microeconomics of how firms form endogenous production networks
 - Macroeconomic conditions determined by production network across countries and regions
- Limited theoretical and empirical understanding of how endogenous network affects aggregate trade flows and welfare across countries and regions

- Build a microfounded model of spatial production networks with tractable aggregation
 - Firms form supplier and buyer relationships across space under trade costs and matching frictions

This Paper

- Build a microfounded model of spatial production networks with tractable aggregation
 - Firms form supplier and buyer relationships across space under trade costs and matching frictions
- Characterize aggregate production networks and spatial distribution of economic activity
 - Gravity equations of trade flows in extensive (number of relationships) and intensive margins
 - Existence/uniqueness, minimal data requirement for counterfactuals, welfare sufficient statistics
 - Characterize first- and second-order effects of shocks on aggregate welfare

This Paper

- Build a microfounded model of spatial production networks with tractable aggregation
 - Firms form supplier and buyer relationships across space under trade costs and matching frictions
- Characterize aggregate production networks and spatial distribution of economic activity
 - Gravity equations of trade flows in extensive (number of relationships) and intensive margins
 - Existence/uniqueness, minimal data requirement for counterfactuals, welfare sufficient statistics
 - Characterize first- and second-order effects of shocks on aggregate welfare
- Using calibrated model using firm-to-firm transaction data from Chile, show that:
 - Search and matching frictions are as important as iceberg cost for aggregate trade flows
 - Endogenous network \Rightarrow larger & more dispersed effects of inter- and intra-national trade shocks

Literature

- Production networks and global value chains
 - "Macro" approaches: Yi '03, '09; Johnson-Noguera '12; Caliendo-Parro '15; Johnson-Moxnes '19; Antràs-Chor '19; Huo-Levchenko-Pandalai-Nayar '20
 - "Micro" approaches / endogenous networks: Bernard-Moxnes '18; Oberfield '18; Lim '18; Huneeus '18; Bernard-Moxnes-Saito '19; Furusawa-Inui-Ito-Tang '19; Boehm-Oberfield '20;
 Bernard-Dhyne-Magerman-Manova-Moxnes '20; Zou '20; Dhyne-Kikkawa-Kong-Mogstad-Tintelnot '22; Demir-Fieler-Xu-Yang '21
 - Endogenous networks in space: Eaton-Kortum-Kramarz '22; Miyauchi '21; Panigraphi '21; Antràs-de-Gortari '20
- Microfounded gravity trade models and sufficient statistics for welfare: Anderson '79; Eaton-Kortum '02; Melitz '03; Chaney '08; Eaton-Kortum-Kramarz '11; Arkolakis-Costinot-Rodriguez-Clare '12; Caliendo-Parro '15; Allen-Arkolakis-Takahashi '19

Propagation of shocks in production networks:

- Hulten '78; Atkeson-Burstein '10; Baqaee-Fahri '19, '20
- Acemoglu-Carvalho-Ozdaglar-Tahbaz-Salehi '12; Di-Giovanni-Levchenko-Mejean '14, 18; Acemoglu-Akcigit-Kerr '16; Carvalho-Nirei-Saito-Tahbaz-Salehi '21; Caliendo-Parro-Rossi-Hansberg-Sarte '18

Data and Motivating Facts

Model and Theoretical Analysis

Quantitative Analysis

Conclusion

Data and Motivating Facts

Model and Theoretical Analysis

Quantitative Analysis

Conclusion

- Domestic firm-to-firm transaction-level dataset in Chile
 - Collected for value-added tax collection purpose
 - Covers the universe of domestic trade between all firms in Chile in 2018 and 2019
 - Seller and buyer tax ID, dates, total amounts, origin and destination municipalities of establishments (345 municipalities in Chile)
- Combined with various firm-level data sets:
 - ► Customs data ⇒ Imports and exports
 - ▶ Firm balance sheet characteristics ⇒ Total sales, labor share, sector

Chilean Domestic Network

Size of the dot represents aggregate revenue

1. Domestic Suppliers & Buyers and Firm Size

Number of domestic suppliers and buyers per firm correlated with firm size, consistent with findings in other contexts (e.g. Bernard-Saito-Moxnes '18, Lim '18)

2. Domestic Suppliers & Buyers and Geographic Location

Number of domestic suppliers and buyers per firm correlated with market size

Robust to controlling for firm size details

3. Intensive and Extensive Margin of Trade Flows

$$\log TradeFlow_{ijt} = \beta \log Dist_{ij} + \xi_{it} + \zeta_{jt} + \epsilon_{ijt}$$

where i, j are municipalities in Chile and t is year

	To	Total		Intensive		nsive
	(1)	(2)	(3)	(4)	(5)	(6)
Log Distance	-1.334*** (0.006)		-0.404*** (0.005)		-0.929*** (0.003)	
Log Time Travel		-1.571*** (0.008)		-0.482*** (0.006)		-1.089*** (0.003)
	0.639	0.639	0.312	0.313	0.818	0.816
Origin Municipality-Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Destination Municipality- Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Same Municipality- Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
N	134898	134898	134898	134898	134898	134898

Extensive and intensive margin decay at different rates

Data and Motivating Facts

Model and Theoretical Analysis

Quantitative Analysis

Conclusion

Set-Up

- Space: $i, u, d \in N$, workers: L_i
- Goods:
 - Intermediate goods: traded across locations subject to iceberg trade cost $au_{ud} \ge 1$
 - Final goods: locally traded
- Firms:
 - Reach final consumers and buy/supply intermediate goods to other firms
 - Firm productivity $z \sim g_i(z)$
 - Cobb-Douglas production with labor (β) and intermediates from connected suppliers, CES within intermediates (σ)
- Single sector for model presentation, multiple sector for quantification

Production given Networks

• Unit cost of production by firm ω in location d

$$c_{d}(\omega) = \frac{1}{z(\omega)} w_{d}^{\beta} \left(\int_{\upsilon \in \mathcal{S}(\omega)} p_{id}(\upsilon, \omega)^{1-\sigma} d\upsilon \right)^{\frac{1-\beta}{1-\sigma}}$$

•
$$z(\omega)$$
: productivity of firm ω

- *w_d*: local wage
- ▶ $p_{id}(v, \omega)$: the price charged by supplier v in location i to ω
- $S(\omega)$ is the set of suppliers that ω has access to (endogenized later)
- Each supplier is monopolistic to each buyer \Rightarrow constant markup

$$p_{id}(v,\omega) = \tilde{\sigma}\tau_{id}c_i(v), \quad \tilde{\sigma} = \frac{\sigma}{\sigma-1}$$

 \blacktriangleright Final consumers: CES utility with same substitution σ

Production Network Formation

Firms with productivity z in location i choose optimal level of advertisement to:

- ▶ final consumers: post n_i^F , no matching frictions, no cross-region trade (Arkolakis '10)
- firm buyers and suppliers: post n^S_{ui}, n^B_{id}, random matching with probability m^S_{ui}, m^B_{id} determined through matching functions (DMP; Demir-Fieler-Xu-Yang '21)
- Search costs:

$$e_{i}\left\{f_{i}^{F}\frac{\left(n_{i}^{F}\right)^{\gamma^{F}}}{\gamma^{F}}+\sum_{d\in N}f_{id}^{B}\frac{\left(n_{id}^{B}\right)^{\gamma^{B}}}{\gamma^{B}}+\sum_{u\in N}f_{ui}^{S}\frac{\left(n_{ui}^{S}\right)^{\gamma^{S}}}{\gamma^{S}}\right\}$$

Search and Matching between Firms

Search and Matching between Firms

Search and Matching between Firms

Search for Final Consumers

Firm's Search Problem

su

$$\max_{\{n_{ui}^{S}\}_{u},\{n_{id}^{B}\}_{d},n_{i}^{F}}\underbrace{\frac{1}{\sigma}n_{i}^{F}\left(\tilde{\sigma}c_{i}\left(z\right)\right)^{1-\sigma}D_{i}^{F}}_{\text{profit from consumers}} +\underbrace{\frac{1}{\sigma}\sum_{d\in N}m_{id}^{B}n_{id}^{B}\left(\tilde{\sigma}c_{i}\left(z\right)\times\tau_{id}\right)^{1-\sigma}D_{d}}_{\text{profit from firm buyers}}$$
$$-\underbrace{e_{i}\left\{f_{i}^{F}\frac{\left(n_{i}^{F}\right)^{\gamma^{F}}}{\gamma^{F}}+\sum_{d\in N}f_{id}^{B}\frac{\left(n_{id}^{B}\right)^{\gamma^{B}}}{\gamma^{B}}+\sum_{u\in N}f_{ui}^{S}\frac{\left(n_{ui}^{S}\right)^{\gamma^{S}}}{\gamma^{S}}\right\}}_{\text{search cost}}$$
bject to $c_{i}\left(z\right) =\frac{w_{i}^{\beta}\left(\sum_{u\in N}n_{ui}^{S}m_{ui}^{S}\left(C_{ui}\right)^{1-\sigma}\right)^{\frac{1-\beta}{1-\sigma}}}{z}$

D^F_i, D_d: demand shifters (isoelastic demand from CES demand + random matching)
 e_i: unit cost for advertisement

► $f_i^F, f_{id}^B, f_{ui}^S, \gamma^F, \gamma^B, \gamma^S$: exogenous parameters for search cost; Assume $\gamma^F = \gamma^B$

• C_{ui} : average intermediate goods cost from u to i

Solution to Firm's Search Problem

Solution gives:

$$n_{i}^{F}(z) = a_{i}^{F} z^{\frac{\delta_{1}}{\gamma^{B}}}, \quad n_{id}^{B}(z) = a_{id}^{B} z^{\frac{\delta_{1}}{\gamma^{B}}}, \quad n_{ui}^{S}(z) = a_{ui}^{S} z^{\frac{\delta_{1}}{\gamma^{S}}}$$

where $\delta_1 \equiv \frac{\sigma - 1}{1 - \frac{1}{\gamma B} - \frac{1 - \beta}{\gamma S}}$ a_{ui}^S, a_{id}^B depend on bilateral search/iceberg cost, demand shifters (*geography*) Number of linkages relates to geography and firm size, Cf Fact 1 and 2

Unit cost of firm with productivity z:

$$\boldsymbol{c}_{i}\left(\boldsymbol{z}\right) = (C_{i}^{*}) \times \boldsymbol{z}^{-\frac{\delta_{1}}{\gamma^{S}}\frac{1-\beta}{\sigma-1}-1}, \quad (C_{i}^{*})^{1-\sigma} \equiv w_{i}^{\beta(1-\sigma)} \left(\sum_{\boldsymbol{u}\in\mathcal{N}} \boldsymbol{a}_{\boldsymbol{u}i}^{S} \boldsymbol{m}_{\boldsymbol{u}i}^{S} \left(\tilde{\sigma} C_{\boldsymbol{u}}^{*} \tau_{\boldsymbol{u}i}\right)^{1-\sigma}\right)^{1-\beta}$$

C^{*}_i summarizes "supplier market access" in region i

Matching between Suppliers and Buyers

Measure of supplier-to-buyer relationships determined by Cobb-Douglas matching function:

$$M_{ud} = \kappa_{ud} \left(\underbrace{N_d \int n_{ud}^S(z) dG_d(z)}_{\tilde{M}_{ud}^S \equiv} \right)^{\lambda^S} \left(\underbrace{N_u \int n_{ud}^B(z) dG_u(z)}_{\tilde{M}_{ud}^B \equiv} \right)^{\lambda^B}$$

Matching probability (intensity):

$$m_{ud}^{S} = rac{M_{ud}}{ ilde{M}_{ud}^{S}}$$
 $m_{ud}^{B} = rac{M_{ud}}{ ilde{M}_{ud}^{B}}$

Gravity Equations of Aggregate Trade Flows

▶ Total number of successful relationships ("extensive margin"), from *u* to *d*

$$M_{ud} = \varrho^{E} \chi^{E}_{ud} \zeta^{E}_{u} \xi^{E}_{d}, \qquad \chi^{E}_{ud} \equiv \left[\kappa_{ud} \left(f^{B}_{ud} \right)^{-\tilde{\lambda}^{B}} \left(f^{S}_{ud} \right)^{-\tilde{\lambda}^{S}} \left(\tau^{1-\sigma}_{ud} \right)^{\tilde{\lambda}^{S} + \tilde{\lambda}^{B}} \right]^{\delta_{2}}$$
$$\tilde{\lambda}^{S} \equiv \lambda^{S} / \gamma^{S}, \tilde{\lambda}^{B} \equiv \lambda^{B} / \gamma^{B}, \delta_{2} \equiv \left[1 - \tilde{\lambda}^{S} - \tilde{\lambda}^{B} \right]^{-1}$$

Gravity Equations of Aggregate Trade Flows

▶ Total number of successful relationships ("extensive margin"), from *u* to *d*

$$M_{ud} = \varrho^{E} \chi^{E}_{ud} \zeta^{E}_{u} \xi^{E}_{d}, \qquad \chi^{E}_{ud} \equiv \left[\kappa_{ud} \left(f^{B}_{ud} \right)^{-\tilde{\lambda}^{B}} \left(f^{S}_{ud} \right)^{-\tilde{\lambda}^{S}} \left(\tau^{1-\sigma}_{ud} \right)^{\tilde{\lambda}^{S} + \tilde{\lambda}^{B}} \right]^{\delta_{2}}$$
$$\tilde{\lambda}^{S} \equiv \lambda^{S} / \gamma^{S}, \tilde{\lambda}^{B} \equiv \lambda^{B} / \gamma^{B}, \delta_{2} \equiv \left[1 - \tilde{\lambda}^{S} - \tilde{\lambda}^{B} \right]^{-1}$$

Transaction volume per relationship ("intensive margin")

$$\bar{r}_{ud} = \varrho^{l} \chi^{l}_{ud} \zeta^{l}_{u} \xi^{l}_{d}, \quad \chi^{l}_{ud} \equiv (\tau_{ud})^{1-\sigma}$$

Gravity Equations of Aggregate Trade Flows

▶ Total number of successful relationships ("extensive margin"), from *u* to *d*

$$M_{ud} = \varrho^{E} \chi^{E}_{ud} \zeta^{E}_{u} \xi^{E}_{d}, \qquad \chi^{E}_{ud} \equiv \left[\kappa_{ud} \left(f^{B}_{ud} \right)^{-\tilde{\lambda}^{B}} \left(f^{S}_{ud} \right)^{-\tilde{\lambda}^{S}} \left(\tau^{1-\sigma}_{ud} \right)^{\tilde{\lambda}^{S} + \tilde{\lambda}^{B}} \right]^{\delta_{2}}$$
$$\tilde{\lambda}^{S} \equiv \lambda^{S} / \gamma^{S}, \tilde{\lambda}^{B} \equiv \lambda^{B} / \gamma^{B}, \delta_{2} \equiv \left[1 - \tilde{\lambda}^{S} - \tilde{\lambda}^{B} \right]^{-1}$$

Transaction volume per relationship ("intensive margin")

$$\overline{r}_{ud} = \varrho^{l} \chi^{l}_{ud} \zeta^{l}_{u} \xi^{l}_{d}, \quad \chi^{l}_{ud} \equiv (\tau_{ud})^{1-\sigma}$$

Different response of "extensive" and "intensive" to trade frictions (Cf Fact 3)

General Equilibrium

- Embed the production network formation model into general equilibrium framework:
 - Free firm entry (N_i)
 - ► Trade balance (*w_i*)
 - ▶ Cost shifter ($C_u^* \propto C_{ui}/\tau_{ui}$) and demand shifter (D_d , D_d^F) from accounting relationships
- Advertisement cost (e_i):

$$e_i = A_i (w_i)^{\mu} (C_i^*)^{1-\mu}$$

• μ : labor share in search cost

1. Characterize sufficient condition for equilibrium uniqueness detail

- 1. Characterize sufficient condition for equilibrium uniqueness detail
- 2. Characterize sufficient statistics for counterfactual equilibrium by "exact-hat algebra" detail
 - Aggregate trade flows $\{X_{ij}\}$ sufficient for counterfactuals

- 1. Characterize sufficient condition for equilibrium uniqueness detail
- 2. Characterize sufficient statistics for counterfactual equilibrium by "exact-hat algebra" detail
 - Aggregate trade flows $\{X_{ij}\}$ sufficient for counterfactuals
- 3. Show that a special case with exogenous production networks ($\lambda^B = \lambda^S = 0$) is isomorphic to gravity trade models with roundabout production
 - Eaton-Kortum '02, Alvarez-Lucas '07, Caliendo and Parro '14 (single-sector); Eaton-Kortum-Kramarz '11; Arkolakis-Costinot-Rodriguez-Clare (ACR) '12; Costinot-Rodriguez-Clare '14

- 1. Characterize sufficient condition for equilibrium uniqueness detail
- 2. Characterize sufficient statistics for counterfactual equilibrium by "exact-hat algebra" detail
 - Aggregate trade flows $\{X_{ij}\}$ sufficient for counterfactuals
- 3. Show that a special case with exogenous production networks ($\lambda^B = \lambda^S = 0$) is isomorphic to gravity trade models with roundabout production
 - Eaton-Kortum '02, Alvarez-Lucas '07, Caliendo and Parro '14 (single-sector); Eaton-Kortum-Kramarz '11; Arkolakis-Costinot-Rodriguez-Clare (ACR) '12; Costinot-Rodriguez-Clare '14
- 4. Import penetration & domestic linkages sufficient stat for welfare, extending ACR '12

- 1. Characterize sufficient condition for equilibrium uniqueness detail
- 2. Characterize sufficient statistics for counterfactual equilibrium by "exact-hat algebra" detail
 - Aggregate trade flows $\{X_{ij}\}$ sufficient for counterfactuals
- 3. Show that a special case with exogenous production networks ($\lambda^B = \lambda^S = 0$) is isomorphic to gravity trade models with roundabout production
 - Eaton-Kortum '02, Alvarez-Lucas '07, Caliendo and Parro '14 (single-sector); Eaton-Kortum-Kramarz '11; Arkolakis-Costinot-Rodriguez-Clare (ACR) '12; Costinot-Rodriguez-Clare '14
- 4. Import penetration & domestic linkages sufficient stat for welfare, extending ACR '12
- 5. First- and second- order effects on aggregate welfare amplified by endogenous network formation, extending Baqaee-Farhi '20

Sufficient Statistics for Welfare

Proposition

Consider an iceberg cost shock $\{\hat{\tau}_{ij}\}$. The proportional change of welfare is given by:

►
$$\lambda^B = \lambda^S = 0 \Rightarrow \hat{M}_{ii} = 1 \Rightarrow$$
 Gravity trade models (Arkolakis '10; ACR '12)

 \hat{M}_{ii} captures "variety" effect of suppliers (cf Golderg et al '10, Gopinath-Neiman '14)

First-Order Effect of Trade Shocks on Aggregate Welfare

Proposition

The first-order effect of $\{d \log \tau_{ij}\}$ on world welfare is given by:

where
$$\varsigma \equiv rac{1-eta}{1- ildeeta} rac{ ildeeta}{eta} \left(1+rac{1}{\gamma^{\mathcal{B}}} rac{1-\mu}{\sigma-1}
ight) \geq 1$$

First-Order Effect of Trade Shocks on Aggregate Welfare

Proposition

The first-order effect of $\{d \log \tau_{ij}\}$ on world welfare is given by:

- Extend Baqaee-Fahri '20 with endogenous production networks
- Second term: "variety" effect of suppliers (cf Golderg et al '10, Gopinath-Neiman '14)

First-Order Effect on World Welfare: Amplification

Proposition

"Endogenous network effect" is proportional to "technological effect," i.e.,

Amplification from endogenous network if

$$\blacktriangleright \ \tilde{\lambda}^{\mathcal{S}} + \tilde{\lambda}^{\mathcal{B}} = \lambda^{\mathcal{S}}/\gamma^{\mathcal{S}} + \lambda^{\mathcal{B}}/\gamma^{\mathcal{B}} > 0 \ \text{and} \ \beta < 1$$

• $\mu < 1$ (search cost is partly paid by intermediate goods) (

second-order effect

Data and Motivating Facts

Model and Theoretical Analysis

Quantitative Analysis

Conclusion

Calibration

- ▶ Multiple sector (9) extension as in Caliendo-Parro '15: Cobb-douglas in tech/pref detail
- Calibrate the model with 345 municipalities in Chile + US, China, ROW
- Exactly match bilateral sectoral domestic & international trade flows $(X_{ud,kl})$

Parameters	Value	Description	Source
α_k	Figure 1	Final consumption share	Observed Final Consumption Share in Each Sector
$\{\beta_{k,L},\beta_{kl}\}$	Figure 2	Sectoral input share in production	Observed Input Share in Each Sector
μ	0.58	Labor share in advertisement service sector	Observed Labor Share in Advertisement Sector
λ^{S}	0.5	Matching function elasticity w.r.t. suppliers	Krolikowski and McCallum (2021)
λ^B	0.5	Matching function elasticity w.r.t. buyers	Krolikowski and McCallum (2021)
γ_k^S	Figure 3	Search cost curvature w.r.t. suppliers	Elasticity of Sales to Number of Suppliers (Cond. on Location FE)
γ_k^B	Figure 3	Search cost curvature w.r.t. buyers	Elasticity of Sales to Number of Buyers (Cond. on Location FE)
σ_k	Figure 4	Elasticity of substitution	Fontagne et al (2022) and Gervais and Jensen (2019)

Calibration

- Multiple sector (9) extension as in Caliendo-Parro '15: Cobb-douglas in tech/pref detail
- Calibrate the model with 345 municipalities in Chile + US, China, ROW
- Exactly match bilateral sectoral domestic & international trade flows $(X_{ud,kl})$

Parameters	Value	Description	Source
α_k	Figure 1	Final consumption share	Observed Final Consumption Share in Each Sector
$\{\beta_{k,L},\beta_{kl}\}$	Figure 2	Sectoral input share in production	Observed Input Share in Each Sector
μ	0.58	Labor share in advertisement service sector	Observed Labor Share in Advertisement Sector
λ^{S}	0.5	Matching function elasticity w.r.t. suppliers	Krolikowski and McCallum (2021)
λ^B	0.5	Matching function elasticity w.r.t. buyers	Krolikowski and McCallum (2021)
γ_k^S	Figure 3	Search cost curvature w.r.t. suppliers	Elasticity of Sales to Number of Suppliers (Cond. on Location FE)
γ_k^B	Figure 3	Search cost curvature w.r.t. buyers	Elasticity of Sales to Number of Buyers (Cond. on Location FE)
σ_k	Figure 4	Elasticity of substitution	Fontagne et al (2022) and Gervais and Jensen (2019)

Show that both iceberg trade costs and search-and-matching frictions are important determinant for aggregate trade flows and production networks detail

Aggregate Effects of Tariff Changes from/to US and China

Reverse tariff changes from/to US and China as observed in the last two decades detail

	Imports China	(p.p.) US	Exports China	(p.p.) US
a) Agriculture and Fishing	-6.54	-6.54	-12.84	-1.86
b) Mining	-6.45	-6.45	-2.63	-0.20
c) Manufacturing	-6.45	-6.45	-13.06	-3.85

Compare results with exogenous production networks

Aggregate Effects of Tariff Changes from/to US and China

	1) Welfare (%)	2) Rel. to Baseline	3) $\hat{X}_{ui,u\in\{\text{US},\text{China}\}}$	4) $\hat{X}_{ui,u\inChile}$	5) $\hat{M}_{ui,u\in\{\text{US},\text{China}\}}$	6) $\hat{M}_{ui,u\inChile}$
a) Baseline	-0.67	100	-5.95	0.23	-2.69	-0.25
b) Exogenous Network: Low Sigma	-0.40	60	-2.35	0.10	0	0
c) Exogenous Network: Baseline Sigma	-0.32	48	-4.22	0.16	0	0
d) Exogenous Network: High Sigma	-0.32	47	-5.98	0.21	0	0

Endogenous production networks lead to

- a larger aggregate effect
- larger reorganization of trade flows and production networks

Endogenous Networks Leads to More Dispersed Effects

Transportation Infrastructure: Effects of Chiloe Island Mega-Bridge

- Planned to open in 2025 as the largest suspension bridge in South America
 - \blacktriangleright Shorten travel time between the island and mainland from 35 (by ferry) \rightarrow 0 minutes
- Simulate the reduction of bilateral trade costs and matching frictions using travel time elasticities for these spatial frictions estimated from cross-section data

Transportation Infrastructure: Effects of Chiloe Island Mega-Bridge

Planned to open in 2025 as the largest suspension bridge in South America

- \blacktriangleright Shorten travel time between the island and mainland from 35 (by ferry) \rightarrow 0 minutes
- Simulate the reduction of bilateral trade costs and matching frictions using travel time elasticities for these spatial frictions estimated from cross-section data

	1) Welfare	2) Rel. to Baseline	3) $\hat{X}_{ui,u\in Chiloe}$	4) Â _{ui,u∉Chiloe}	5) $\hat{M}_{ui,u\in Chiloe}$	6) <i>Âl_{ui,u∉Chiloe}</i>
a) Baseline	0.25	100	1.13	-0.01	2.29	-0.08
b) Exogenous Network: Low Sigma	0.17	68	0.37	-0.00	0	0
c) Exogenous Network: Baseline Sigma	0.16	62	0.61	-0.00	0	0
d) Exogenous Network: High Sigma	0.14	58	0.77	-0.00	0	0

Highly localized welfare gains, with large contribution from endogenous networks detail

Conclusion

- Analyze endogenous production network formation in space
- Characterize aggregate production networks and spatial distribution of economic activity
- > Apply our model to firms' domestic and foreign transaction data from Chile
 - Endogenous networks \Rightarrow larger and more dispersed effects of inter- & intra-national trade shocks
- ► Two ongoing work:
 - Dynamics of Supply Chain Disruptions
 - RCT of Network Formation: Evidence from Trade Fairs

Ongoing Work: Dynamics of Supply Chain Disruption

Appendix

Domestic Suppliers & Buyers and Market Size Return

		Log Numbe	er of Buyer	S	Log Number of Suppliers			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log Density	0.039*** (0.001)		0.027*** (0.001)	0.018*** (0.001)	0.121*** (0.002)		0.109*** (0.002)	0.051*** (0.002)
Log Sales		0.422*** (0.001)	0.421*** (0.001)	0.421*** (0.001)		0.449*** (0.002)	0.447*** (0.002)	0.412*** (0.001)
R^2	0.012	0.461	0.462	0.541	0.019	0.198	0.207	0.419
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
State FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Industry FE				\checkmark				\checkmark
Other Controls				\checkmark				\checkmark
Ν	361142	361142	361142	361142	361886	361886	361886	361886

Characterizing Equilibrium: Buyer and Supplier Access Coback

▶ We show that equilibrium is characterized by two fixed points of wages w_i and cost shifter C_i^*

Buyer access:

$$w_i = \frac{\vartheta}{L_i} \sum_d X_{id}$$

where
$$X_{id}\left(\left\{w\right\},\left\{C^{*}\right\};\left\{\chi^{E}\right\},\left\{\chi^{\prime}\right\}\right)=M_{id}\overline{r}_{id}$$

Supplier access:

$$(C_i^*)^{1-\sigma} = w_i^{\beta(1-\sigma)} \left[(\tilde{\sigma})^{\sigma} \mathbb{M}_i \left(\frac{\delta}{\gamma^5} \right) N_i \right]^{\beta-1} \left(\frac{\sum_u X_{ui}}{D_i} \right)^{1-\beta}$$

Similar to previous literature (Anderson-van-Wincoop '03, Reddding-Venables '04, Donaldson-Hornbeck '16) while incorporating the endogenous search and matching

Characterizing Equilibrium (Bo back)

After manipulations, "typical" mathematical structure in gravity trade and spatial models

Theorem

Equilibrium can be written in terms of wages w_i and cost shifter C_i^*

$$(w_i)^{1+\tilde{\lambda}^B \delta_2 \mu} (C_i^*)^{(\sigma-1)\delta_2 + \tilde{\lambda}^B \delta_2 (1-\mu)} = \frac{1}{L_i} \sum_d K_{id} (w_d)^{\delta_G} (C_d^*)^{\frac{(\sigma-1)\delta_2}{1-\beta} - \tilde{\lambda}^S \delta_2 (1-\mu)},$$

$$(w_i)^{1-\delta_G} (C_i^*)^{-\frac{(\sigma-1)\delta_2}{1-\beta} + \tilde{\lambda}^S \delta_2 (1-\mu)} = \frac{1}{L_i} \sum_u K_{ui} (w_u)^{-\tilde{\lambda}^B \delta_2 \mu} (C_u^*)^{-(\sigma-1)\delta_2 - \tilde{\lambda}^B \delta_2 (1-\mu)},$$

where $\delta_{G} = \left[-\tilde{\lambda}^{S}\mu + \frac{1-\beta\sigma}{1-\beta}\right]\delta_{2}$ and K_{id} are combination of exogenous parameters

Characterizing Equilibrium: Uniqueness Control Date

From buyer access equation:

$$(w_i)^{1+\tilde{\lambda}^B\delta_{2}\mu}(C_i^*)^{(\sigma-1)\delta_{2}+\tilde{\lambda}^B\delta_{2}(1-\mu)} = \sum_{d} K_{id} (w_{d})^{\delta_{G}} (C_{d}^*)^{\frac{(\sigma-1)\delta_{2}}{1-\beta}-\tilde{\lambda}^{S}\delta_{2}(1-\mu)}$$

▶ Demand effects dissipates as infinitely going to upstream when $\delta_{G} \leq 1$

From supplier access equation:

$$(w_{i})^{1-\delta_{G}}(C_{i}^{*})^{-\frac{(\sigma-1)\delta_{2}}{1-\beta}+\tilde{\lambda}^{5}\delta_{2}(1-\mu)}=\sum_{u}K_{ui}(w_{u})^{-\tilde{\lambda}^{B}\delta_{2}\mu}(C_{u}^{*})^{-(\sigma-1)\delta_{2}-\tilde{\lambda}^{B}\delta_{2}(1-\mu)}$$

Cost effect dissipates as infinitely going to downstream when

$$-\frac{(\sigma-1)\,\delta_2}{1-\beta} + \tilde{\lambda}^{S}\delta_2\,(1-\mu) \le -(\sigma-1)\,\delta_2 - \tilde{\lambda}^{B}\delta_2\,(1-\mu)\,(<0)$$
$$\iff \frac{\beta\,(\sigma-1)}{1-\beta} \ge (1-\mu)\,(\tilde{\lambda}^{B} + \tilde{\lambda}^{S})$$

Responses to Shocks (go back)

- ► Denote observed import share by, $\Lambda_{ui} \equiv \frac{X_{ui}}{\sum_{e} X_{ei}}$, and export share by $\Psi_{id} \equiv \frac{X_{id}}{\sum_{e} X_{ie}}$
- ► Consider a change in exogenous variables (e.g., trade costs), which feeds into the proportional changes in \hat{K}_{id} (where $\hat{x} = x'/x$ and x' is the counterfactual value)

Proposition

The counterfactual changes of wages \hat{w}_i and intermediate cost shifter \hat{C}_i^* are solved by

$$\left(\hat{w}_{i}\right)^{1+\tilde{\lambda}^{B}\delta_{2}\mu}\left(\hat{C}_{i}^{*}\right)^{\left(\sigma-1\right)\delta_{2}+\tilde{\lambda}^{B}\delta_{2}\left(1-\mu\right)}=\sum_{d}\hat{K}_{id}\left(\hat{w}_{d}\right)^{\delta_{G}}\left(\hat{C}_{d}^{*}\right)^{\frac{\left(\sigma-1\right)\delta_{2}}{1-\beta}-\tilde{\lambda}^{S}\delta_{2}\left(1-\mu\right)}\Psi_{id}$$

$$(\hat{w}_i)^{1-\delta_G} \left(\hat{C}_i^*\right)^{-\frac{(\sigma-1)\delta_2}{1-\beta}+\tilde{\lambda}^S\delta_2(1-\mu)} = \sum_u \hat{K}_{ui} \left(\hat{w}_u\right)^{-\tilde{\lambda}^B\delta_2\mu} \left(\hat{C}_u^*\right)^{-(\sigma-1)\delta_2-\tilde{\lambda}^B\delta_2(1-\mu)} \Lambda_{ui}$$

• Aggregate bilateral trade flows (X_{ui}) and a set of structural parameters $(\tilde{\lambda}^B, \tilde{\lambda}^S, \beta, \sigma, \mu)$ are sufficient for characterizing counterfactual equilibrium

Second-Order Effect on World GDP (go back)

Proposition

Second-order effect from iceberg cost shock in a particular region-pair $d \log \tau_{ij}$ is given by

$$\frac{d^{2}\log \mathcal{W}}{d\log \tau_{ij}^{2}} = -\underbrace{\underbrace{\frac{\varsigma}{1 - \left(\tilde{\lambda}^{S} + \tilde{\lambda}^{B}\right)\frac{1 - \beta}{\beta}\frac{1 - \mu}{\sigma - 1}}_{\geq 1}}_{\geq 1} \underset{\text{tend to be } <0 \text{ from substitution}}{\frac{d\log X_{ij}}{d\log \tau_{ij}}}$$

- Positive shock $(d \log \tau_{ij} < 0) \rightarrow \text{amplification}$
- Negative shock $(d \log \tau_{ij} > 0) \rightarrow dampening$
- Amplification and dampening tend to be stronger with endogenous production networks because of additional substitution margin

Model Extension: Multiple Sectors (20 back)

• Unit cost of a firm in sector $k \in K$

$$c_{i,k}(\omega) = \frac{1}{z_{i,k}(\omega)} w_i^{\beta_{k,L}} \prod_{h \in K} \left(\int_{\upsilon \in \Omega_h(\omega)} p(\upsilon, \omega)^{1-\sigma_k} d\upsilon \right)^{\frac{\beta_{hk}}{1-\sigma_k}}$$

Firms' search problem:

$$\max_{\{n_{ui,hk}^{S}\}_{u\in N,h\in K}, \{n_{id,kl}^{B}\}_{d\in N,l\in K}, n_{ik}^{F} \sigma_{k}} \prod_{i,k}^{F} \frac{c^{1-\sigma_{k}}}{\sigma_{k}} D_{ik}^{F} + \frac{1}{\sigma_{k}} \sum_{l\in K} \sum_{d\in N} m_{id,kl}^{B} n_{id,kl}^{B} D_{i,kl} \left(c\tau_{id,k}\right)^{1-\sigma_{k}}}{-e_{i,k} \left\{ \sum_{l\in K} \sum_{d\in N} f_{id,kl}^{B} \frac{\left(n_{id,kl}^{B}\right)^{\gamma_{k}^{B}}}{\gamma_{k}^{B}} + \sum_{h\in K} \sum_{u\in N} f_{ui,hk}^{S} \frac{\left(n_{ui,hk}^{S}\right)^{\gamma_{k}^{S}}}{\gamma_{k}^{S}} \right\}}$$
subject to $c = \frac{w_{i}^{\beta_{k,L}} \prod_{h} \left(\sum_{u\in N} n_{ui,hk}^{S} m_{ui,hk}^{S} \left(C_{ui,h}\right)^{1-\sigma_{h}}\right)^{\frac{\beta_{hk}}{1-\sigma_{h}}}}{z}$
Solution: $n_{ui,hk}^{S} \left(z\right) = a_{ui,hk}^{S} \frac{\delta_{1,k}}{\gamma_{k}^{S}}; n_{id,kl}^{B} \left(z\right) = a_{id,kl}^{B} \frac{\delta_{1,k}}{\gamma_{k}^{B}}; n_{i,k}^{F} \left(z\right) = a_{i,k}^{F} \frac{\delta_{1,k}}{\gamma_{k}^{B}}}{z}$
Hat-algebra for general equilibrium similarly as Caliendo and Parro (2015)

Final Consumption Shares: By Sector (α_k) Return

Figure: Final Consumption Shares: By Sector (α_k)

Labor Shares of Cost: By Sector $(\beta_{k,L})$ Return

Figure: Labor Shares of Cost: By Sector $(\beta_{k,L})$

46/36

Curvature of Advertisement Cost: By Sector Return

Figure: Curvature of Advertisement Cost: By Sector

Consumption and Labor Shares Return

Figure: Elasticity of Substitution: By Sector

Estimating Spatial Frictions Return

Decompose bilateral trade frictions in "search frictions" and "iceberg cost"

$$\chi_{ud,kl} \equiv \chi_{ud,kl}^{\mathcal{E}} \chi_{ud,kl}^{\prime} \chi_{ud,kl}^{\prime} = \underbrace{\left[\kappa_{ud,kl} \left(f_{ud,kl}^{\mathcal{B}} \right)^{-\tilde{\lambda_{kl}}^{\mathcal{B}}} \left(f_{ud,kl}^{\mathcal{S}} \right)^{-\tilde{\lambda_{kl}}^{\mathcal{S}}} \right]^{\delta_{2,k}}}_{\chi_{ud,kl}^{\text{iceberg}}} \underbrace{\left(\tau_{ud,kl} \right)^{\frac{1-\sigma_{k}}{1-\tilde{\lambda_{kl}}^{\mathcal{B}}-\tilde{\lambda_{kl}}^{\mathcal{S}}}}}_{\chi_{ud,kl}^{\text{iceberg}}} \right)^{\delta_{2,k}}}_{\chi_{ud,kl}^{\text{iceberg}}}$$

Use intensive and extensive margin of bilateral flows to estimate two spatial frictions relative to within-location-sector trade (Head Ries '01)

$$\frac{\chi_{ud,kl}^{\text{iceberg}}}{\chi_{uu,kk}^{\text{matching}}} \frac{\chi_{du,lk}^{\text{iceberg}}}{\chi_{du,lk}^{\text{iceberg}}} = \left(\frac{\overline{r}_{ud,kl}}{\overline{r}_{uu,kk}} \frac{\overline{r}_{du,lk}}{\overline{r}_{dd,ll}}\right)^{\frac{1-\overline{\lambda}_{kl}^B - \overline{\lambda}_{kl}^S}{\overline{\lambda}_{kl}^B - \overline{\lambda}_{kl}^S}}$$

$$\frac{\chi_{ud,kl}^{\text{matching}}}{\chi_{uu,kk}^{\text{matching}}} \frac{\chi_{du,lk}^{\text{matching}}}{\chi_{du,lk}^{\text{matching}}} = \frac{M_{ud,kl}}{M_{uu,kk}} \frac{M_{du,lk}}{M_{dd,ll}} \left(\frac{\overline{r}_{ud,kl}}{\overline{r}_{uu,kk}} \frac{\overline{r}_{du,lk}}{\overline{r}_{dl,ll}}\right)^{\frac{-\left(\overline{\lambda}_{kl}^B + \overline{\lambda}_{kl}^S\right)}{1-\overline{\lambda}_{kl}^B - \overline{\lambda}_{kl}^S}}$$

Estimates of Iceberg Costs and Matching Frictions Return

Spatial Frictions and Geographic Distance Return

Elasticity of frictions with travel distance, by sector

- Both search & matching costs and iceberg costs increase in geographic distance
- Consistent with recent literature on search and matching frictions in trade (Chaney 2014, Allen 2014, Eaton-Kortum-Kramarz 2016, Brancaccio-Kalouptsidi-Papageorgiou 2020, Lenoir-Martin-Mejean 2020, Krolikowski-McCallum 2021, Startz 2021, Miyauchi 2021)

International Trade Shocks: Tariff Changes Faced by Chile Return

International Trade Shocks: Sensitivity Coback

	1) Welfare	2) Exog. Network / Baseline (%)	3) $\hat{X}_{ui,u\in\{\text{US,China}\}}$	4) $\hat{X}_{ui,u\inChile}$	5) $\hat{M}_{ui,u\in\{\text{US,China}\}}$	6) $\hat{M}_{ui,u\in Chile}$
a) Baseline	0.99	40	7.55	-0.29	3.02	0.31
b) $\beta_{k,L} + 0.2$	0.56	43	8.03	-0.30	3.06	0.17
c) $\mu=0$	1.92	23	6.41	-0.26	3.04	0.96
d) $\mu = 1$	0.69	53	7.91	-0.31	3.00	0.08
e) $\lambda^S = 1, \lambda^B = 0$	0.94	42	8.00	-0.29	3.31	0.20
f) $\lambda^S = 0, \lambda^B = 1$	1.07	37	7.72	-0.31	3.16	0.45
g) $\lambda^S = \lambda^B = 0.6$	1.49	27	8.37	-0.33	4.27	0.63
h) $\lambda^S = \lambda^B = 0.3$	0.61	65	6.25	-0.24	1.43	0.11
i) $\lambda^{S}/\lambda^{B} = \sigma/(\sigma-1), \lambda^{S}+\lambda^{B}=1$	0.99	40	7.58	-0.29	3.03	0.30

International Trade Shocks: Sign and Magnitudes Coback

	1) Welfare	2) Exog. Network / Baseline (%)	3) $\hat{X}_{ui,u\in\{\text{US,China}\}}$	4) $\hat{X}_{ui,u\inChile}$	5) $\hat{M}_{ui,u\in\{\text{US,China}\}}$	6) $\hat{M}_{ui,u\in Chile}$
a) Large Increase of Tariffs (Baseline Counterfactual)	-0.67	48	-5.95	0.23	-2.69	-0.25
b) Small Increase of Tariffs (10% of Row (a))	-0.07	40	-0.69	0.03	-0.31	-0.04
c) Large Decrease of Tariffs (Inverse of Row (a))	0.99	40	7.55	-0.29	3.02	0.31
d) Small Decrease of Tariffs (10% of Row (c))	0.06	41	0.66	-0.03	0.29	0.04

Large positive shocks are more amplified, large negative shocks are less amplified

International Trade Shocks: Sign and Magnitudes (1900 back)

Table: Only Import Tariff Changes

	1) Welfare	2) Rel. to Baseline	3) $\hat{X}_{ui,u\in\{\text{US,China}\}}$	4) $\hat{X}_{ui,u\inChile}$	5) $\hat{M}_{ui,u\in\{\text{US},\text{China}\}}$	6) $\hat{M}_{ui,u\in Chile}$
a) Baseline	-0.59	100	-5.57	0.23	-2.52	-0.20
b) Exogenous Network: Low Sigma	-0.38	65	-2.14	0.10	0	0
c) Exogenous Network: Baseline Sigma	-0.32	55	-3.88	0.15	0	0
d) Exogenous Network: High Sigma	-0.32	54	-5.54	0.20	0	0

Table: Only Export Tariff Changes

	1) Welfare	2) Rel. to Baseline	3) $\hat{X}_{ui,u\in\{\text{US},\text{China}\}}$	4) $\hat{X}_{ui,u\inChile}$	5) $\hat{M}_{ui,u\in\{\text{US},\text{China}\}}$	6) $\hat{M}_{ui,u\in Chile}$
a) Baseline	-0.08	100	-0.36	0.00	-0.13	-0.02
b) Exogenous Network: Low Sigma	-0.02	19	-0.22	0.00	0	0
c) Exogenous Network: Baseline Sigma	-0.00	1	-0.36	0.01	0	0
d) Exogenous Network: High Sigma	-0.00	2	-0.46	0.01	0	0

Transportation Infrastructure: Heterogeneity (so back)

	1) All Municipalities	2) High Exposure Municipalities	3) Low Exposure Municipalities
(A) Welfare(%)			
a) Baseline	0.25	2.15	0.22
b) Exogenous Network: Baseline Sigma	0.16	1.19	0.14
(B) $\hat{M}_{ui,u\inChiloe}$			
c) Baseline	2.29	8.48	2.19
d) Exogenous Network: Baseline Sigma	0	0	0